BERTIN ENGINEERING	JOB	22-147: Jersey City, NJ		
66 GLEN AVENUE	SHEET NO.	1	OF	4
GLEN ROCK, NEW JERSEY 07452	CALCULATED BY	MBL	DATE	3/23/2022
(201) 670-6688	CHECKED BY	EMH	DATE	3/23/2022
FAX (201) 670-9788	SCALE			

STORMWATER DRAINAGE CALCULATIONS

PROPOSED 3-FAMILY BUILDING BLOCK 4601, LOT 17 221 LIBERTY AVENUE JERSEY CITY, HUDSON COUNTY, NEW JERSEY

BE# 22-147

MARCH 23, 2022

Eric M. Hough, NJPE Lic#51893

BERTIN ENGINEERING	JOB	22-147: Jersey City, NJ		
66 GLEN AVENUE	SHEET NO.	2	OF	4
GLEN ROCK, NEW JERSEY 07452	CALCULATED BY	MBL	DATE	3/23/2022
(201) 670-6688	CHECKED BY	EMH	DATE	3/23/2022
FAX (201) 670-9788	SCALE			

1. DETERMINE THE CHANGE IN SURFACE RUNOFF DUE TO THE PROPOSED CONSTRUCTION:

The total size of the proposed disturbed area on-site is 0.081 acres. The development will increase the amount of impervious area. The resulting increase in runoff will be handled by a dry well.

The limit of disturbance of the project is less than 1 acre and will not increase impervious surfaces by more than 1/4 acre. As a result, the project is not a "Major Development" as defined by NJAC 7:8 and therefore not required to meet the groundwater recharge, water quality and water quantity requirements. The site has been designed to have the proposed runoff peak rates for the 2-, 10- & 100-year storm events equal or less than the existing runoff peak rates.

I) Determine Rainfall Intensity (I) for 2, 10 & 100 Year Storms:

1.	For exisiting conditions: For proposed conditions:		$T_c = T_c =$	10 mins 10 mins
2.	Calculate I ₂ , I ₁₀ & I ₁₀₀ : (Based on Trenton Rainfall Database)	$\frac{For T_{c} = 1}{I_{2} = 1}$ $I_{10} = 1$ $I_{100} = 1$	<u>10.0 mins</u> 4.3 in/hr 5.9 in/hr 8.0 in/hr	

II) Use Rational Formula to Determine Flow for Existing Conditions:

Q = c x I x A where		Q = Flow (cfs) c = Runoff Coefficient use				nsity (in/hr) for Perviou for Impervi	
Total area = Impervious = Pervious =	2,574 s	3,533 sf =0.0812,574 sf =0.059959 sf =0.022		ac			
c =	0.30 x	0.022	+ 0.95 x	0.059	=	0.79	
-		0.0	81				
Q ₂ =	0.79	х	4.3	х	0.081	=	0.28 cfs
Q ₁₀ =	0.79	х	5.9	х	0.081	=	0.38 cfs
Q ₁₀₀ =	0.79	х	8.0	х	0.081	=	0.51 cfs
III) Use Rational Formula t	to Determine FI	ow for Pr	oposed Cond	itions:			
Total area = Impervious = Pervious =	3,421 s	3,421 sf =		0.081 ac 0.079 ac 0.003 ac			
с =	0.30 x	0.003	+ 0.95 x	0.079	=	0.94	
-		0.0					
Q ₂ =	0.94	х	4.3	х	0.081	=	0.33 cfs
Q ₁₀ =	0.94	х	5.9	х	0.081	=	0.45 cfs
Q ₁₀₀ =	0.94	х	8.0	х	0.081	=	0.61 cfs

BERTIN ENGINEERING	JOB	22-147: Jersey City, NJ		
66 GLEN AVENUE	SHEET NO.	3	OF	4
GLEN ROCK, NEW JERSEY 07452	CALCULATED BY	MBL	DATE	3/23/2022
(201) 670-6688	CHECKED BY	EMH	DATE	3/23/2022
FAX (201) 670-9788	SCALE			

STORM (year)	EXISTING (cfs)	PROPOSED (cfs)	CHANGE (cfs)
2	0.28	0.33	0.05
10	0.38	0.45	0.07
100	0.51	0.61	0.10

IV) Conclusion:

The calculations indicate that the proposed site redevelopment increases the surface runoff for the three storms. Runoff due to a 2, 10 & 100-year storm are increased by 0.05, 0.07 & 0.10 cfs respectively. The proposed roof area will be captured and infiltrated to reduce the proposed runoff rates to below existing.

2. DRY WELL DESIGN

The dry well is designed for a 10-year storm of 60 minute duration with an intensity of 2 in/hr. One dry well is proposed to collect a portion of the roof runoff from the proposed dwelling.

I) Determine Collected Area:

		f Area = f Area =	2,275 sf 1,706 sf			•	ea, All Imperv ea, All Imperv	,		
		c =	0.95							
The dry v	vell v	vill hold the en	tire 10 year	runoff.						
II) <u>Calculate</u>	e Q ₁₀	o for Drainage	<u>Area:</u>							
Q ₁₀₀	=	0.95	х	2.0	х	0.039	=	0.07 cfs		
III) Calculate	e Rai	nfall Amount to	be stored b	by Dry Well:						
Volume :	= (Q x T _d =	0.07 cfs	3 X	60	min x 60 se	ecs/min =	252.0 cf		
IV) Determin	e Dr	y Well Sizing:								
Volume o	of Dry	/ Well:		$V_{d} = (\pi/4)$) x 7.33 ²	x 4			=	168.8 cf
		id in Stone: coeff. = 0.4)		$V_{v} = 0.4$	[(10 x 10	x 5) - (π/4)	x 8 ² x 4)]		=	119.6 cf
Total Vol	ume	Stored:						V _d + V _v 288.4 cf		

BERTIN ENGINEERING	JOB	22-147: Jersey City, NJ		
66 GLEN AVENUE	SHEET NO.	4	OF	4
GLEN ROCK, NEW JERSEY 07452	CALCULATED BY	MBL	DATE	3/23/2022
(201) 670-6688	CHECKED BY	EMH	DATE	3/23/2022
FAX (201) 670-9788	SCALE			

3. DETERMINE THE CHANGE IN SURFACE RUNOFF FOR THE REDUCED PROPOSED DRAINAGE AREA:

Existing runoff should be compared to the runoff generated by the uncollected portion of the proposed drainage area.

Total area = Impervious = Pervious =	1,827 1,715 112	sf =	0.042 ac (Reduced Drainage 0.039 ac 0.003 ac			e Area)		
с =	0.30 x	0.003	+ 0.95 x	0.039	=	0.91		
		0.0	42					
Q ₂ =	0.91	х	4.3	х	0.042	=	0.16	cfs
Q ₁₀ =	0.91	х	5.9	х	0.042	=	0.23	cfs
Q ₁₀₀ =	0.91	х	8.0	х	0.042	=	0.31	cfs
								.
STORM (year)	EXISTING	i (cfs)	PR	OPOSED ((cfs)	CHANGE	(cfs)	% Exist.
2	0.28			0.16		-0.11 59		59.7%
10	0.38			0.23		-0.15	-0.15 59.7	
100	0.51			0.31		-0.21		59.7%

The calculations indicate that the proposed site redevelopment with infilration decreases the surface runoff for the three storms. Runoff due to a 2, 10 & 100-year storm are decreased by 0.11, 0.15 & 0.21 cfs respectively. Since the project is not a Major Development, no additional reductions are required.

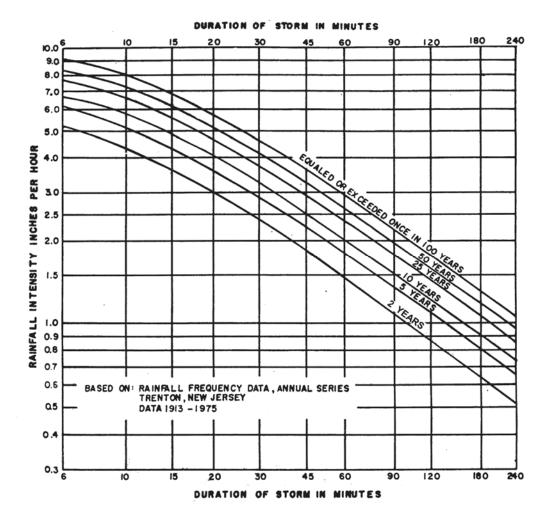


Figure 5-4: Rainfall Intensity-Duration-Frequency Curves

Note: Adapted from Figure 2.1-2 in the NJDEP Technical Manual for Stream Encroachment Permits.